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SUMMARY 

An inexact Newton method is used to solve the steady, incompressible Navier-Stokes and energy equations. 
Finite volume differencing is employed on a staggered grid using the power law scheme of Patankar. 
Natural convection in an enclosed cavity is studied as the model problem. Two conjugate-gradient-like 
algorithms based upon the Lannos  biorthogonalization procedure are used to solve the linear systems 
arising on each Newton iteration. The first conjugate-gradient-like algorithm is the transpose-free 
quasi-minimal residual algorithm (TFQMR) and the second is the conjugate gradients squared algorithm 
(CGS). Incomplete lower-upper (ILU) factorization of the Jacobian matrix is used as a right preconditioner. 
The performance of the Newton-TFQMR algorithm is studied with regard to  different choices for the 
TFQMR convergence criteria and the amount of fill-in allowed in the ILU factorization. Performance 
data are compared with results using the Newton-CGS algorithm and previous results using LINPACK 
banded Gaussian elimination (direct-Newton). The inexact Newton algorithms were found to  be CPU 
competetive with the direct-Newton algorithm for the model problem considered. Among the inexact 
Newton algorithms, Newton-CGS outperformed Newton-TFQMR with regard to CPU time but was less 
robust because of the sometimes erratic CGS convergence behaviour. 

KEY WORDS Incompressible Navier-Stokes Newton’s method Conjugate gradient 

1. INTRODUCTION 

The use of robust, fully implicit algorithms to solve the Navier-Stokes equations has grown in 
popularity in both finite element and finite volume applications owing to the rapid advances in 
computer speed and available memory. lP9 Direct matrix solution methods are commonly used, 
employing either a banded solver or the frontal method.” Research by the finite volume 
community has demonstrated the robustness of fully implicit methods compared with the more 
common segregated solution procedures such as SIMPLE.’ ’ This improved robustness is due 
to the implicit treatment of the velocity-pressure-temperature coupling. 

The main drawback of direct Newton methods is the large memory required to factor the 
Jacobian matrix. This drawback has been countered with advances in sparse matrix iterative 
solution algorithms. Specifically, the development of efficient conjugate-gradient-like algorithms 
for the solution of non-symmetric, non-positive definite linear  system^'^*'^ has enabled the 
implementation of ‘in-core’, multidimensional, fully implicit Newton method solutions for the 
Navier-Stokes and energy equations. Since the use of an iterative solver does not require the 
exact solution of the linear system, the resulting algorithm has been labelled ‘inexact’ Newton 

This feature is advantageous in the sense that the tolerance of the linear equation 
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solve can be relaxed when far from the true solution and tightened as the true true solution is 
approached. 

'Out-of-core' matrix solvers such as the frontal method can also be used to handle large 
Jacobian matrices that exceed available 'in-core' memory. Only a limited number of matrix 
entries (contributing to the active 'frontal matrix') must be stored in core memory, yet partial 
or full pivoting is possible in the frontal Einset and Jensen found that despite the 
advantages of the frontal method, there is a break-even point in front width above which iterative 
solutions become more effi~ient.~ Their preconditioned iterative method outperformed the 
frontal method in their tests when the frontal width exceeded approximately 500. These results 
as well as those of other researchers16 have encouraged us to focus on the performance of 
'in-core' conjugate-gradient-like iterative algorithms. 

True conjugate gradient methods compute approximations to x in the affine space xo + K,, 
where K, is the Krylov subspace of dimension m." They are characterized by an optimality 
condition and economical or short vector recurrences." Note that for symmetric matrices short 
vector recurrence relationships arise naturally, resulting in constant work and storage require- 
ments on each iteration. For non-symmetric matrices, however, short recursions do not exist l 9  

and so the work and storage requirements increase with the iteration number; making the use 
of true conjugate gradient methods impractical for large problems. 

In the case of non-symmetric matrices some problems allow successful application of true 
conjugate gradient algorithms to the normal equations (i.e. A'Ax = A'b).' Disadvantages in 
this approach, however, are that the condition number of the new system is made much worse 
and matrix-vector multiplications with A' are required. Working with A' is undesirable for 
several reasons:20 first, the transpose is not always readily available; second, the efficiency of 
matrix-vector multiplications with the transpose may be reduced on vector/parallel computers; 
and third, working with the transpose eliminates the option of matrix-free implementations of 
Newton's m e t h ~ d . ~ ' - ~ ~  For these reasons we chose to concentrate on the performance of 
conjugate-gradient-like algorithms. 

Conjugate-gradient-like methods are derived by either relaxing the optimality condition or 
sacrificing economical vector  recursion^.^^ The optimality condition may be relaxed by allowing 
periodic algorithm restarts and artificially truncating the recursion (i.e. the new direction vector 
is orthogonal to only the previous s direction vectors). Economical vector recursions can also 
be obtained at the expense of optimality by using the non-symmetric Lanczos biorthogonaliza- 
tion procedure (i.e. using three-term recursions to build a pair of biorthogonal bases).24 

This investigation considers algorithms derived using the non-symmetric Lanczos procedure. 
Compared with Arnoldi-based methods (i.e. GMRES25), these Lanczos-based methods typically 
require less work and storage per iteration. The first of the Lanczos-based methods developed 
was the biconjugate gradient (BCG) algorithm, which requires matrix-vector multiplications 
with the matrix transpose.26v27 This shortcoming was overcome with the development of CGS, 
a variant of BCG that avoids the use of the matrix transpose. CGS doubles the rate of 
convergence of BCG, but unfortunately it also doubles the rate of divergence. Since CGS lacks 
a minimization property, it sometimes exhibit very erratic convergence behaviour. In order to 
obtain more smoothly convergent CGS-like solutions, Freund applied the quasi-minimal residual 
idea to the CGS algorithm (TFQMR).29 Note that both CGS and TFQMR may encounter 
algorithm breakdown, although in our experience these occurrences appear to be infrequent in 
practice. The look-ahead Lanczos procedure has been used in other algorithms to avoid these 
breakdowns, but they once again require working with the matrix t r a n s p ~ s e . ' ~ , ~ ~ . ~ '  

In this study two inexact Newton algorithms are used to solve the incompressible Navier- 
Stokes and energy equations. The first is formed using the TFQMR algorithm (Newton- 
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TFQMR) and the second uses the CGS algorithm (Newton-CGS). The important features of 
these algorithms are discussed further in Section 2, while performance results obtained in solving 
the well-known problem of natural convection in an enclosed cavity3' are presented in Section 
3. The latter section demonstrates the significant memory advantages possible with the use of 
iterative solvers in contrast with the use of LINPACK banded Gaussian elimination (direct- 
Newton). Two parameter studies are also included in Section 3. The first investigates varying 
the inner iteration convergence criteria and the second investigates increasing the level of fill-in 
used in the ILU preconditioner. Based on the results of these parameter studies, the two inexact 
Newton algorithms are benchmarked against the direct-Newton algorithm. Additionally, the 
relative merits of both the Newton-CGS and Newton-TFQMR algorithms are studied and 
compared. Conclusions and important observations are summarized in Section 4. 

2. NUMERICAL SOLUTION ALGORITHM 

This section describes the important features of the inexact Newton algorithms. These features 
include the use of a numerical Jacobian evaluation to simplify implementation and the use of 
mesh sequencing to extend the radius of convergence of the algorithm. In addition, important 
points regarding the use of conjugate-gradient-like algorithms within an inexact Newton 
iteration are discussed. 

2.1. Newton's method 

Newton's method is a robust technique for solving systems of non-linear equations of the 
form 

where the state variable x can be expressed as 

x = [XI, X',. . . )  X,]? (2) 

Application of Newton's method requires the solution of the linear system 

J"6x" = -F(x"), (3) 

where the elements of the Jacobian J are defined by 

J~~ = a j p x j  (4) 

x"" = x"+ d6x". (5)  

and the new solution approximation is obtained from 

The constant d (0 < d < 1) in equation (5)  is sometimes used to damp the Newton updates. The 
damping strategy is designed to prevent the calculation of non-physical variable values (i.e. 
negative temperature) and to scale large variable updates when the solution is far from the true 
solution. Damping was not necessary to obtain the solutions presented Section 3. This iteration 
is continued until the norm of 6x and/or the norm of F(x) are below some suitable tolerance 
level. This convergence criterion is discussed further in Section 2.5. 

We note that for problems where forming and factoring the Jacobian matrix account for a 
significant fraction of the CPU time, successful use of a modified Newton iteration can lead to 
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substantial CPU time savings.’ Implementation of a modified Newton iteration with a direct 
linear equation solver is straightforward and efficient, but CPU savings can also be realized 
with iterative solvers by freezing the Jacobian and preconditioning matrices for several Newton 
steps within an inexact Newton iteration. In this study, however, the focus is on the performance 
of the inexact Newton iteration. An investigation of the benefits of using a modified Newton 
iteration with an iterative linear equation solver will be deferred to a later study. Thus the 
performance of our inexact Newton algorithm will be benchmarked against a full Newton 
iteration using LINPACK banded Gaussian elimination. 

2.2. Numerical Jacobian 

The elements of the Jacobian in equation (4) are evaluated numerically using finite difference 
approximations, 

where 

Axj  = ax j+  b (7) 

and a and b are small perturbation  constant^.'*^^^^ 

but requires only a small fraction of the total CPU time per iteration.”’ 
We use an algorithm that maintains much of the flexibility of a standard numerical Jacobian 

2.3. Mesh sequencing 

Mesh sequencing is used to obtain an initial guess on the final grid that lies within the 
radius of convergence of Newton’s method. Mesh sequencing is analogous to the first upward 
cycle of a full multigrid (FMG) a l g ~ r i t h m . ~ ~  We use third-order Lagrangian interpolation to 
move through a series of uniform grids that are generated from the previous grid by doubling 
the grid dimension in both directions. Thus the interpolated solution from the previous grid is 
used as the initial guess on the new grid. The improved efficiency resulting from the use of mesh 
sequencing will be demonstrated in Section 3. 

2.4. Iterative linear equation solver 

The desire to extend our original research to fine, two-dimensional grids and to three- 
dimensional grids motivated the switch from a banded Gaussian elimination solver to a 
preconditioned conjugate-gradient-like algorithm for the solution of equation (3). The use of 
banded Gaussian elimination in solving these types of problems can be extremely costly, in terms 
of both CPU time and memory requirements, owing to large matrix bandwidths. To avoid these 
problems, the CGS and TFQMR algorithms have been implemented to take advantage of the 
sparse, banded structure of the Jacobian matrix. 

In order to accelerate the convergence of the TFQMR algorithm, we currently use right 
preconditioning. The right-preconditioned TFQMR algorithm29 is presented below for comple- 
teness, where P, represents the inverse of the preconditioning matrix and the algorithm is 
designed to solve the system Ax = b. A listing of the CGS algorithm is omitted here, but note 
that TFQMR is an extension of the CGS algorithm. For additional information regarding the 
development of these algorithms see References 28 and 29. In the listing below, keep in mind 
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that within the inexact Newton algorithm, A = J, x = 6x and b = -F(x"). All other variables 
are defined within the TFQMR listing. 

I. Initialize 
1. Choose x,. 
2. Set 

qo = p- = do = 0, v, = 'lo = n = 0; ,.CGS , = - r o =  b -  Ax,, 
P-1 = 1, T~ = IIrgGSII ( 1 1  11 denotes Euclidean norm). 

11. For n = 0, 1 ,2 , .  . . , d o :  
1. Set 

pn = fir:GS, P n  = P n I P n -  1 9  un = rFGs + Bnqn; 

Pn = un + BAS, + B n P n -  1 1 9  

q n +  1 = Un - %Vn,  

Vn  = A(Pr)Pn 9 

Vn = an(PrKun + q n +  1)- 

on = ? i V n ,  an = P n f t J n ;  

rCGS - CGS - 
n + l  - r n  Avn. 

2. For m = 2n + 1,2n + 2 do: 

1 

2 
Vm- 1Vm- 1 

an 
d m  = Ym + 4 - 1 ;  

un ifmisodd 
Y m = {  qn ifmiseven 

x m  = xm- 1 + Vm(Pr)dm; 

continue until x, has converged. 

In this study P, is the inverse of an incomplete lower-upper (ILU(k)) factorization of the 
Jacobian m a t r i ~ . ~ ' - ~ *  A m odified 'level of fill-in' idea is used to determine non-zero locations 
in the LU factors. This is accomplished by initializing the level of all original non-zero elements 
in the Jacobian matrix to zero. Then fill-in terms arising from the elimination of a k-level term 
are set to level k + l .37 In our implementation, however, we take advantage of the banded 
structure of our Jacobian matrix and store only non-zero diagonals. This means that if a fill-in 
term is not located in one of the stored diagonals, an additional matrix diagonal must be added 
to the diagonal set in order to include this fill-in term. We recognize that more compact storage 
schemes would eliminate this additional fill-in.39-41 However, for the simple test problem in this 
study the memory advantages of these schemes did not warrant sacrificing the convenience of 
the diagonal storage scheme. 

Since P, = (LU)- ', where LU represents the incomplete factorization of J, one can see that 
products of the form (P,)v are calculated using simple forwardfbackward solves. Additionally, 
since P, is an approximate inverse of J, it can be used to obtain an initial guess for the solution 
of the linear system (i.e. by setting 6xo = -P,F(xo)). 

One of the difficulties in solving the primitive variable form of the incompressible Navier-- 
Stokes equations is that pressure does not explicitly appear in the continuity equation. Thus, if 
the continuity equation is solved for pressure, a zero will appear on the main diagonal in all 
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the rows in the Jacobian matrix representing the continuity equation. This difficulty is overcome 
by a direct solver with efficient pivoting, but pivoting may not be practical when using a sparse 
matrix iterative solver. Alternatives to pivoting include adding non-zeros to the diagonal using 
some sort of penalty function2*'6 and realigning the equations and variables to avoid zeros on 
the main diagonal.6 In the case of an iterative solver using ILU preconditioning, fill-in resulting 
from the incomplete factorization will generate non-zero terms in most of these zero diagonal 
rows. However, Chin et al.' pointed out that for a natural ordering (i.e. 'uupT') there will be 
no fill-in on the continuity equation row if the finite volume lies adjacent to a corner boundary 
such that the bottom and left face coincide with the boundary. They further note that if there 
is only one such cell, the difficulty can be removed by arbitrarily fixing the pressure in that cell. 
However, problems arise when more than one such cell exists in the computational grid. 

Chin et al. chose to investigate clever alternative ordering strategies to solve this problem.' 
An alternative technique, which avoids the additional complexity caused by variable reordering, 
is the use of Kershaw's method for treating unstable pivots in incomplete LU  factorization^.^^ 
This method allows near-zero pivots to be adjusted in such a way that the incomplete 
factorization algorithm is kept stable and the error associated with the pivot adjustment is 
minirni~ed.~' One advantage in this approach is that very small pivots, which may cause 
algorithm instability, are adjusted along with the hard zero pivots. We have observed the benefit 
of this feature elsewhere in solving the equations governing the incompressible flow over a 
backward-facing step.' 

In the case of the natural convection problem, however, only one such 'problem' cell exists 
(lower left corner). Thus the difficulty is overcome by simply fixing the pressure to a constant 
value in that cell, which is justified for this model problem and the incompressible flow 
a s ~ u m p t i o n . ~ ~  

2.5. Inexact Newton method 

One advantage in coupling an iterative linear equation solver with Newton's method is 
that the linear system can be solved less accurately during the initial Newton iterations when 
far from the true solution and more accurately as the true solution is approached. This is in 
contrast with the use of a direct solver, which requires the same amount of work whether one 
is close to the true solution or not. 

We adopt an inner iteration convergence criterion similar to that proposed by Averick and 
Ortega14 and Dembo et al. l 5  Specifically, the inner TFQMR iteration is assumed converged 
when 

where the superscript on RI refers to the inner iteration and the subscript indicates the 
dependence on the Newton iteration. The selection of the best value of y,, is highly empirical. 
In Section 3.3.2 we investigate two options for setting yn. The first is to set y,, to a constant value 
and the second is to let y,, vary on each Newton iteration." 

This inner iteration convergence criterion is used with a limit on the maximum number of 
inner iterations. In our numerical experiments we have set this upper limit equal to 200. We 
will demonstrate that in situations where this upper limit is encountered frequently, the selected 
iterative algorithm should not display erratic convergence behaviour such as that exhibited by 
BCG26*27 and CGS.'* 
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The convergence criterion for the outer Newton iteration is based upon a relative update 
defined by 

where the superscript on R: refers to the outer Newton iteration and the subscript indicates the 
dependence on the Newton iteration. Convergence is then assumed when 

R; c 1 x (10) 
This means that six digits of accuracy are required when the magnitude of the state variable is 
greater than one, and six decimal places of accuracy are required when the magnitude of the 
state variable is less than one. 

3. RESULTS 

3.1. Natural convection problem description 

The geometry for the natural convection model problem is displayed in Figure 1. Using 
the Boussinesq appro~imation,4~ the governing equations for the natural convection problem 
in dimensionless and conservative form can be expressed as 

continuity 
au av 
ax a y  -+ -=o ,  

momentum 
a U 2  auv a p  a2u a Z U  

ax  ay ax  ax2  ay2’  
-+ -=- -+-+-  

auv av2 a p  aZv  a2y 
ax ay  ay  ax* a y 2  
- + - = - -  + ~ + - + GrT, 

arlay = 0 y t  u = v = o  

I 

# 
# 
# 
# 
/ 1’: T = O  

u = v = o  

/ 

ariay = o 
u = v = o  

X 

Figure 1. Geometry for natural convection model problem 
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Table 1. Comparison of algorithm memory requirements using direct versus iterative linear equation solvers 
(in megawords) 

Iterative solver 
Direct 

Grid solver ILU(0) IUU) ILU(2) ILU(3) 

15 x 15 0.1 74 0.0342 0.0414 0.0558 0.077 
30 x 30 1.343 0.1368 0.166 0.2232 0.3 1 
6 0 x 6 0  1056 0.547 0.662 0.8928 1.24 

120 x 120 83.69 2.189 2.65 3.57 4.95 

energy 

auT avT 1 a2T  a2T  ax+% =F&+v). (14) 

where Gr is the Grashof number, Pr is the Prandtl number and the Rayleigh number Ra is given 
by Ra = Gr Pr. The gravity vector is assumed pointing in the negative y-direction. Boundary 
conditions for this problem are specified in Figure 1. 

3.2. Memory requirements 

Our inexact Newton method uses conjugate-gradient-like algorithms to solve equation (3). 
Since these algorithms are well suited for sparse matrix applications, significant reductions in 
computer memory requirements are possible. Table I demonstrates this memory advantage 
for the natural convection problem, comparing the preconditioned TFQMR algorithm with 
LINPACK banded Gaussian elimination. The direct solve data represent the memory required 
to store the Jacobian matrix, while the iterative solve data represent the memory required to 
store the Jacobian matrix and the ILU preconditioner. Four different levels of fill-in are 
considered for the ILU preconditioner. Table I shows that the potential memory advantage 
increases with grid refinement. For the 60 x 60 grid the memory required for the direct solve 
is roughly an order of magnitude larger than that required for the iterative solve. For the coarsest 
grid listed, the direct solve memory requirement is a factor of two larger than the iterative solve 
with ILU(3) preconditioning and a factor of five larger with ILU(0) preconditioning. Note that 
all computations were run on a CRAY X-MP/216 with 16 megawords of memory. Thus the 
60 x 60 grid was the finest allowable grid for calculations with the direct solver. 

3.3. Algorithm performance 

In this section the performance of the inexact Newton method algorithm is benchmarked 
against a direct Newton iteration using LINPACK banded Gaussian elimination. The perfor- 
mance of the inexact Newton method using ILU-preconditioned TFQMR is studied with respect 
to the inexact Newton convergence parameter ( y n ) ,  the level of fill-in used in the ILU(k) 
preconditioner and the use of mesh sequencing. In addition, the performance of the algorithm 
using TFQMR is compared with the performance obtained using the CGS algorithm. Note that 
the TFQMR algorithm provides an upper bound for the residual norm that was not used in 
this study. Use of this upper bound could make the TFQMR algorithm less expensive, because 
the calculation of the residual norm could be postponed until this upper bound was small enough. 
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Table 11. Performance data using LINPACK banded Gaussian elimination for 
Ra = lo4 

Grid 
Newton iterations 

(4 CPU time (s) 

15 x 15 7 
30 x 30 7 
60 x 60 7 

15 x 15 > 30 x 30 > 60 x 60 7, 4, 4 

3.52 
30.72 

262.82 
172.9 

3.3.1. Direct Newton iteration results. Performance data using LINPACK banded Gaussian 
elimination are presented in Table I1 for Ra = lo4. The required number of Newton iterations 
(n) as well as the required CPU time are listed for three different mesh sizes. The last row 
represents data using mesh sequencing. In this case the required number of iterations on each 
grid is listed in the second column. Table I1 shows that the required CPU time increases 
significantly as the grid dimensions are doubled in both directions. Note also that the use of 
mesh sequencing reduced the required CPU time by roughly 34%. Mesh sequencing enables 
this saving by providing a better initial guess on the finest grid. This results in fewer iterations 
when the CPU cost per iteration is high. For this problem the CPU cost of a single iteration 
on the finest grid was equivalent to approximately 75 iterations on the coarest grid. This 
behaviour is consistent with previous results' where CPU savings of approximately 45% were 
observed. Differences between these results and those of Reference 1 are due to the use of different 
convergence criteria. 

3.3.2. Convergence parameter y,,. The efficiency of an inexact Newton iteration is closely tied 
to the proper selection of y,,. If y,, is chosen too small, needless extra work will be performed 
when the Newton iteration is not within the radius of convergence of the algorithm. Conversely, 
if y,, is chosen too large, the convergence of the Newton iteration will be slow. Here we investigate 
two options for setting y,,. The first is to set y,, to a constant value and the second is to let y,, 
vary on each Newton iteration using an expression similar to that proposed in Reference 22. 
Table 111 demonstrates the effect of varying y,, on algorithm performance. The results presented 
in Table 111 were obtained for Ra = lo4 on a 60 x 60 grid starting from a flat initial guess 
(u = v = 0, T = 0.5) using ILU(2)-preconditioned TFQMR to solve equation (3). The expression 

Table 111. Effect of varying yn on algorithm performance 
(60 x 60 grid, flat initial guess) 

Y. n m CPU time (s) 

10-4 7 62 568.8 
1 0 - 3  8 51 536.6 
10-2 9 38 4744 
10-1 1 1  25 408.76 
2 24 12 545.9 
(;)Minim 10) 9 32 403.8 
(+)Mintn. 101 8 40 441.7 

I - 
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n 
Figure 2. Effect of y. on algorithm convergence 

used for Y,,, the required number of Newton iterations (n), the average TFQMR iterations per 
Newton iteration (m) and the total CPU time are given. The results suggest that y,, < is 
too restrictive during the initial Newton iterations. Conversely, y,, > 10- was not sufficiently 
restrictive when the Newton iteration was close to the true solution, resulting in a large number 
of required Newton iterations. The best overall results were obtained using y,, = (f)Min(n* lo). 
For this selection y n  initially assumes the value o f f  and is reduced with the Newton iteration 
number until it reaches a minimum value of the order of 10-j. Thus yn  becomes more 
restrictive as the true solution is approached. The effect of varying y,, on the algorithm 
convergence behaviour is shown in Figure 2. Observe that y,, = 0.5 results in slow convergence, 
while reduced 7,-values yield much faster (superlinear) convergence. Another important observa- 
tion is that y,, = (f)Mintn* lo), although large initially, still produces very favourable convergence 
behaviour. Similar performance was observed for coarser grids and other levels of ILU fill-in. 

Analogous results obtained using mesh sequencing are shown in Table TV, where a 60 x 60 

Table IV. Effect of varying y,, on algorithm performance 

Y. n m CPU time (s) 

10-4 7, 4 , 4  10, 18, 50 321.7 
1 0 - 3  7, 4, 4 8, 16, 45 2754  
1 0 - 2  8, 5,  5 6, 12, 34 272.8 
10-1 9, 7, 8 3, 7, 20 293.9 

(f)Mintn. 101 7, 7, 8 5, 7, 31 390.5 
(:)Min(n. 10) 7, 6, 6 6, 12, 33 32 1.7 
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Table V. Effect of higher levels of ILU fill-in on algorithm performance (flat initial guess on each grid) 

15 x 15 grid 30 x 30 grid 60 x 60 grid 

k n m t n m t n m t 

0 8 11  3.96 9 37 47.5 1 9 121 563.6* 
1 8 5 4.95 9 16 46.98 8 60 521.6 
2 7 5 6.23 8 1 1  40.54 9 32 403.8 
3 9 6 14.63 8 13 70.76 9 26 487.3 

* Indicates the TFQMR iteration limit of 200 was encountered. 

grid solution for Ra = lo4 was obtained using a 15 x 15 and 30 x 30 grid sequence. In this case 
values for n and m are presented for each grid. A comparison of Tables 111 and IV again 
demonstrates the benefits of mesh sequencing. For example, using y,, = lop3, mesh sequencing 
enabled a CPU time saving of approximately 42%. Table IV also suggests that when using mesh 
sequencing, a more restrictive convergence criterion is needed during the initial Newton iterations 
in order to take advantage of the improved initial guesses on the finer grids. The adaptive 
convergence selections did not work as well with mesh sequencing. In fact, a constant value of 
y,, = lo-’ yielded the best overall results. The potential saving using y,, = ( f )Min(n*lo)  on the initial 
grid is not warranted, because the CPU cost of the initial grid solution is typically a small 
fraction of the cost of the total calculation. 

is advisable when a good initial guess is available. However, when a good initial guess is not 
available, the adaptive convergence criterion of y,, = ($)Min(n* lo) appears the best overall selection. 

Based on the results presented in Tables 111 and IV, it appears that the selection of y,, = 

3.3.3. Efect of fill-in using ILU(k) preconditioning. Effective preconditioning is essential in 
improving the robustness of the TFQMR iteration. One measure of an effective preconditioner 
is how well it approximates the system matrix. For an incomplete LU factorization, allowing 
more fill-in will most likely improve this approximation. The drawback, however, is higher CPU 
and memory storage cost. This suggests an optimal level of fill-in that balances CPU time and 
memory considerations against preconditioner effectiveness. Table V demonstrates the effect of 
different levels of fill-in ( k )  versus grid size for Ra = lo4. Listed for each grid are the required 
number of Newton iterations (n), the average TFQMR iterations per Newton iteration (m) and 
the total CPU time (t). The solution on each grid was obtained from a flat initial guess (u = u = 0, 
T = 0.5). Although the use of k > 0 on the 15 x 15 grid reduced the average TFQMR iterations, 
the total CPU time actually increased. For the 30 x 30 grid a small reduction in CPU time was 
observed using ILU(1) and ILU(2). On the 60 x 60 grid the benefits of k > 0 became more 
significant. ILU(2) preconditioning reduced the average TFQMR iterations by a factor of four 
and the total CPU time by approximately 30% compared with ILU(0) preconditioning. Note 
that the CPU performance of ILU(3) was poor on the coarser grids and was not as efficient as 
ILU(2) on the 60 x 60 grid. For this problem, use of ILU(2) preconditioning provides a good 
compromise between CPU time and memory considerations and preconditioner effectiveness. 

3.3.4. TFQMR performance benchmark. This subsection is intended to benchmark the 
performance of the inexact Newton algorithm using the TFQMR algorithmz9 against the use 
of the CGS algorithm.” In addition, the performance of the inexact Newton iteration is 
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Table VI. Comparison of CPU performance of two inexact Newton algorithms and the direct- 
Newton algorithm (flat initial guess on each grid) 

CPU time (s) 

Direct- Newton- Newton- 
Grid Newton TFQMR CGS RTFQMR RCGS 

15 x 15 3.52 3.96 2.25 1.125 0.64 
30 x 30 30.12 40.54 28.3 1.32 0.92 
60 x 60 262.82 403.76 221.54 1.54 0.84 

compared with a direct Newton iteration using LINPACK banded Gaussian elimination. 
Table VI compares the CPU performance of these different algorithms versus grid size for 
Ra = lo4. The inexact Newton algorithms use ILU(0) on the coarsest grid and ILU(2) on the 
two finer grids. y,, = lo) is used as the inner iteration convergence criterion. The last two 
columns of Table VI present ratios of the required CPU time using the iterative solvers to the 
required CPU time using the direct solver. Thus RTFQMR represents the ratio of total CPU time 
using the Newton-TFQMR algorithm to the total CPU time using the direct-Newton algorithm. 
Similarly, R,,, represents the ratio of total CPU time using the Newton-CGS algorithm, to the 
total CPU time, using the direct-Newton algorithm. The results indicate that the Newton-CGS 
algorithm was more efficient than both the direct-Newton and Newton-TFQMR algorithms. 
The Newton-TFQMR algorithm was less efficient than the direct Newton iteration, but still 
competitive. For both inexact Newton algorithms, forward-backward solve operations asso- 
ciated with the ILU preconditioning dominated the CPU time. Our implementation of the CGS 
algorithm requires three of these operations per iteration, while the TFQMR algorithm requires 
five such operations. In addition, the TFQMR algorithm performs three more vector additions 
per iteration than the CGS algorithm. These differences roughly account for the increased CPU 
times observed for the TFQMR algorithm, since the iteration counts for the two algorithms 
were similar. As noted previously, the TFQMR algorithm could be made more efficient by 
making use of the available upper bound for the residual norm. 

The reduced CPU efficiency of TFQMR compared with CGS is compensated with improved 
robustness. Recall from the discussion in Section 1 that CGS displays rather erratic convergence 
behaviour. In Section 2.4 we alluded to the potential problems that may arise when this erratic 
convergence behaviour is encountered within an inexact Newton iteration. In fact, if ILU(0) 
preconditioning is used to solve a higher-Ra problem (Ra = 10’) on a 60 x 60 grid with 
y,, = the Newton-CGS algorithm fails after only the second Newton iteration, while the 
Newton-TFQMR algorithm converges after 13 Newton iterations. The cause of the Newton- 
CGS failure is the erratic convergence behaviour of the CGS algorithm, which has been observed 
elsewhere.12*28 Recall from Section 2.4 that we impose an upper limit on the number of inner 
iterations equal to 200. On the second Newton iteration both the CGS and TFQMR algorithms 
encountered this upper limit. While the erratic convergence behaviour of CGS returned a very 
poor approximate solution to equation (3), the TFQMR algorithm returned an acceptable 
solution that allowed the eventual convergence of the algorithm. This behaviour illustrated in 
Figures 3 and 4, which show the convergence behaviour of both CGS and TFQMR during the 
first and second Newton iterations. Figure 3 shows that both algorithms converged to the desired 
tolerance on the first Newton iteration, although the convergence of the CGS algorithm is very 
erratic. Note how the TFQMR algorithm successfully controls and smooths the erratic CGS 
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Figure 3. Convergence comparison between TFQMR and CGS on first Newton iteration 
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Figure 4. Convergence comparison between TFQMR and CGS on second Newton iteration 
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Table VII. Comparison with benchmark solution of De Vahl DavisJ2 
~~ 

Current solution 

15 x 15 30 x 30 60 x 60 120 x 120 
Benchmark 

solution 

urnax 22.7859 22.663 22.738 22.784 22.788 
Y 0.177 0.167 0.183 0.175 0.179 
urnax 27.6296 27.599 27.657 27.594 27640 
X 0.88 1 0.900 0.883 0.875 0.879 

convergence behaviour. Figure 4 shows that during the second Newton iteration neither 
algorithm converged to the desired tolerance after 200 iterations. The CGS algorithm terminated 
with Ri approximately equal to 45. This means that the residual norm of the linear system 
(equation (3)) was 45 times larger than if the Newton update was assumed zero. This poor update 
resulted in the failure of the algorithm on the subsequent Newton iteration. The TFQMR 
algorithm, on the other hand, terminated with RI approximately equal to 0.043, which 
represented an acceptable approximate solution to equation (3). 

This behaviour might be avoided in some instances by using better preconditioning to improve 
the convergence behaviour of the iterative algorithms. However, this option may not always be 
feasible owing to memory limitations or to the lack of a better-known preconditioner. For this 
reason we feel that the advantage of robustness associated with the use of TFQMR is more 
important than the slight CPU efficiency advantage obtained with CGS. 

3.4. Solutions 

The solutions to the natural convection problem for Ra = lo4 are compared with the 
benchmark solution of De Vahl Davis3* in Table VII. Note that the velocity data from Reference 
32 were multiplied by the factor P i  to account for the different choices in scaling. Additionally, 
the positions were adjusted to account for the reversed circulation direction in Reference 32. 
Table VII presents the maximum horizontal velocity component (u)  and its corresponding 
y-location along the line x = 0.5, and the maximum vertical velocity component (u )  and its 
x-location along the line y = 05. Data from four different grids of increasing refinement are 
compared with the benchmark solution of Reference 32. Table VII shows the improved 
agreement with the benchmark solution as the grid is refined. The agreement between the 
benchmark solution and the 120 x 120 grid solution is very good. 

4. CONCLUSIONS 

Fully implicit inexact Newton algorithms were used to solve the well-known natural convection 
model problem governed by the steady, incompressible Navier-Stokes and energy equations. 
An efficiently evaluated numerical Jacobian was used to simplify implementation and mesh 
sequencing was used to improve robustness and CPU efficiency. The TFQMR and CGS iterative 
algorithms are used to form the inexact Newton algorithms. Right ILU(k) preconditioning was 
used to improve the performance of the iterative solvers. The inexact Newton algorithms were 
found to be CPU competitive with a direct Newton iteration using LINPACK banded Gaussian 
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elimination, yet significantly more efficient from a memory standpoint. In certain circumstances 
the Newton-TFQMR algorithm was shown to be more robust than the Newton-CGS algorithm. 

The inexact Newton algorithm allows less work in solving the linear systems during the initial 
Newton iterations when far from the true solution, but requires more accurate solutions as the 
true solution is approached. We investigated several choices for the convergence parameter yn 
which controls this behaviour. Among these choices, yn  = (f)Min{n*lo) was the best choice when a 
good initial guess was not available, but y n  = worked best overall when a good initial 
guess was available. 

Effective preconditioning is an essential ingredient in the successful use of conjugate-gradient- 
like algorithms. Thus in the case of ILU(k) preconditioning we tried to determine the optimal 
level of fill-in that balances CPU efficiency with preconditioner effectiveness. We found that 
ILU(2) preconditioning provided a good compromise between CPU efficiency, memory con- 
siderations and preconditioner effectiveness for moderately refined grids. For coarse grids (i.e. 
15 x 15) we found that ILU(0) preconditioning was sufficient. 

In the future we plan to investigate matrix-free implementations of the inexact Newton method 
using several combinations of preconditioners and conjugate-gradient-like algorithms.20-22 With 
regard to the incompressible Navier-Stokes equations, we hope to investigate the effect of solving 
a pressure equation in place of the continuity equation in order to avoid zeros on the main 
diagonal of the Jacobian matrix. Additionally, the effects of using higher-order differencing and 
body-fitted co-ordinates on algorithm performance will also be considered. 
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APPENDIX: NOMENCLATURE 

a 
b 
d 
F 
GY 
J 
k 
m 
n 
Nu 
Pr 
Ra 
U 
U 
X 

SX 

Ax 
X 

perturbation constant 
perturbation constant 
damping constant 
governing equation vector 
Grashof number 
Jacobian matrix 
level of fill-in in ILU preconditioner 
inner iteration counter 
Newton iteration counter 
Nusselt number 
Prandtl number, v/a 
Rayleigh number 
dimensionless principal velocity, ii/ii 
dimensionless transverse velocity, ij/u 
state variable vector 
update vector 
perturbation in j th component of state vector 
principal co-ordinate variable 
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Ax grid spacing in x-direction 
y transverse co-ordinate variable 
Ay grid spacing in y-direction 

Greek letters 

a thermal diffusivity 
y 

v kinematic viscosity 

tolerance for iterative linear equation solver 
time step control constant 

Subscript 

n Newton iteration number 

Superscripts 

i inner iteration 
n Newton iteration number 
0 outer iteration 

Operators 

[ IT transpose of [ ] 
(1 - ( 1  Euclidean norm 
I1 * I1 m L - n o r m  
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